Artificial General Intelligence
Artificial general intelligence (AGI) is a type of artificial intelligence (AI) that matches or exceeds human cognitive abilities throughout a vast array of cognitive jobs. This contrasts with narrow AI, which is restricted to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that considerably surpasses human cognitive abilities. AGI is considered one of the definitions of strong AI.
Creating AGI is a main goal of AI research study and of business such as OpenAI [2] and Meta. [3] A 2020 survey identified 72 active AGI research study and development projects throughout 37 nations. [4]
The timeline for accomplishing AGI remains a topic of ongoing argument among researchers and experts. As of 2023, some argue that it may be possible in years or years; others maintain it may take a century or longer; a minority think it might never ever be attained; and another minority claims that it is already here. [5] [6] Notable AI researcher Geoffrey Hinton has actually expressed concerns about the quick progress towards AGI, recommending it could be accomplished sooner than many expect. [7]
There is dispute on the specific meaning of AGI and relating to whether contemporary big language models (LLMs) such as GPT-4 are early forms of AGI. [8] AGI is a common topic in science fiction and futures studies. [9] [10]
Contention exists over whether AGI represents an existential threat. [11] [12] [13] Many professionals on AI have actually mentioned that reducing the risk of human termination positioned by AGI must be an international priority. [14] [15] Others discover the development of AGI to be too remote to present such a risk. [16] [17]
Terminology
AGI is likewise called strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, or basic smart action. [21]
Some academic sources schedule the term "strong AI" for computer system programs that experience life or awareness. [a] In contrast, weak AI (or narrow AI) has the ability to solve one particular issue however lacks general cognitive abilities. [22] [19] Some academic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the exact same sense as humans. [a]
Related ideas consist of synthetic superintelligence and transformative AI. An artificial superintelligence (ASI) is a theoretical kind of AGI that is a lot more typically smart than humans, [23] while the notion of transformative AI relates to AI having a big influence on society, for example, comparable to the agricultural or commercial transformation. [24]
A structure for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They specify 5 levels of AGI: emerging, proficient, expert, virtuoso, and superhuman. For instance, a qualified AGI is specified as an AI that outshines 50% of skilled adults in a large variety of non-physical jobs, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise defined however with a threshold of 100%. They think about big language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have been proposed. Among the leading propositions is the Turing test. However, there are other well-known meanings, and some researchers disagree with the more popular techniques. [b]
Intelligence traits
Researchers usually hold that intelligence is needed to do all of the following: [27]
reason, use strategy, resolve puzzles, bphomesteading.com and make judgments under unpredictability
represent knowledge, including sound judgment knowledge
plan
learn
- interact in natural language
- if required, incorporate these abilities in completion of any given goal
Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and choice making) consider extra characteristics such as imagination (the ability to form novel psychological images and principles) [28] and autonomy. [29]
Computer-based systems that display many of these capabilities exist (e.g. see computational creativity, automated reasoning, choice assistance system, robot, evolutionary computation, smart representative). There is dispute about whether modern-day AI systems have them to an adequate degree.
Physical qualities
Other capabilities are considered preferable in smart systems, as they might impact intelligence or help in its expression. These consist of: [30]
- the ability to sense (e.g. see, hear, and so on), and - the capability to act (e.g. relocation and control items, change place to check out, and so on).
This consists of the ability to detect and react to hazard. [31]
Although the capability to sense (e.g. see, hear, and so on) and the capability to act (e.g. move and control items, modification area to check out, etc) can be desirable for some intelligent systems, [30] these physical capabilities are not strictly required for an entity to certify as AGI-particularly under the thesis that big language models (LLMs) might currently be or become AGI. Even from a less optimistic viewpoint on LLMs, there is no company requirement for an AGI to have a human-like type; being a silicon-based computational system is enough, offered it can process input (language) from the external world in place of human senses. This analysis aligns with the understanding that AGI has never ever been proscribed a specific physical embodiment and therefore does not require a capacity for locomotion or standard "eyes and ears". [32]
Tests for human-level AGI
Several tests indicated to verify human-level AGI have actually been considered, including: [33] [34]
The idea of the test is that the machine needs to try and pretend to be a male, by responding to questions put to it, and it will just pass if the pretence is reasonably convincing. A significant portion of a jury, who must not be expert about devices, should be taken in by the pretence. [37]
AI-complete issues
A problem is informally called "AI-complete" or "AI-hard" if it is thought that in order to solve it, one would need to implement AGI, because the solution is beyond the abilities of a purpose-specific algorithm. [47]
There are numerous issues that have actually been conjectured to need general intelligence to fix along with human beings. Examples consist of computer system vision, natural language understanding, and dealing with unforeseen circumstances while fixing any real-world problem. [48] Even a specific job like translation requires a device to check out and compose in both languages, follow the author's argument (factor), comprehend the context (understanding), and faithfully reproduce the author's initial intent (social intelligence). All of these problems require to be resolved at the same time in order to reach human-level maker performance.
However, much of these tasks can now be performed by modern large language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level efficiency on lots of benchmarks for reading comprehension and visual thinking. [49]
History
Classical AI
Modern AI research study started in the mid-1950s. [50] The first generation of AI researchers were convinced that synthetic basic intelligence was possible and that it would exist in simply a couple of years. [51] AI leader Herbert A. Simon wrote in 1965: "makers will be capable, within twenty years, of doing any work a male can do." [52]
Their forecasts were the motivation for niaskywalk.com Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they could produce by the year 2001. AI leader Marvin Minsky was an expert [53] on the project of making HAL 9000 as sensible as possible according to the consensus forecasts of the time. He stated in 1967, "Within a generation ... the issue of creating 'expert system' will considerably be fixed". [54]
Several classical AI projects, such as Doug Lenat's Cyc project (that started in 1984), and Allen Newell's Soar job, were directed at AGI.
However, in the early 1970s, it ended up being apparent that scientists had actually grossly underestimated the trouble of the job. Funding firms became skeptical of AGI and put scientists under increasing pressure to produce useful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI objectives like "continue a casual discussion". [58] In action to this and the success of professional systems, both industry and government pumped cash into the field. [56] [59] However, self-confidence in AI marvelously collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never ever fulfilled. [60] For the 2nd time in 20 years, AI researchers who predicted the imminent achievement of AGI had been mistaken. By the 1990s, AI scientists had a credibility for making vain pledges. They became hesitant to make predictions at all [d] and prevented reference of "human level" expert system for worry of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI achieved business success and academic respectability by concentrating on particular sub-problems where AI can produce proven outcomes and commercial applications, such as speech acknowledgment and suggestion algorithms. [63] These "applied AI" systems are now utilized extensively throughout the technology industry, and research in this vein is greatly funded in both academic community and market. As of 2018 [update], advancement in this field was considered an emerging pattern, and a fully grown phase was expected to be reached in more than 10 years. [64]
At the turn of the century, numerous traditional AI researchers [65] hoped that strong AI might be established by integrating programs that resolve various sub-problems. Hans Moravec wrote in 1988:
I am confident that this bottom-up route to artificial intelligence will one day satisfy the traditional top-down path majority way, all set to supply the real-world skills and the commonsense knowledge that has actually been so frustratingly elusive in reasoning programs. Fully smart devices will result when the metaphorical golden spike is driven joining the two efforts. [65]
However, even at the time, this was contested. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by mentioning:
The expectation has frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches somewhere in between. If the grounding factors to consider in this paper stand, then this expectation is hopelessly modular and there is truly only one feasible path from sense to signs: from the ground up. A free-floating symbolic level like the software application level of a computer system will never be reached by this route (or vice versa) - nor is it clear why we need to even attempt to reach such a level, given that it looks as if arriving would simply total up to uprooting our signs from their intrinsic significances (thus simply reducing ourselves to the practical equivalent of a programmable computer). [66]
Modern synthetic general intelligence research
The term "synthetic basic intelligence" was used as early as 1997, by Mark Gubrud [67] in a discussion of the ramifications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the ability to satisfy goals in a large range of environments". [68] This type of AGI, characterized by the capability to increase a mathematical meaning of intelligence instead of exhibit human-like behaviour, [69] was also called universal expert system. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The very first summer school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and including a number of visitor lecturers.
Since 2023 [update], a small number of computer system researchers are active in AGI research study, and numerous contribute to a series of AGI conferences. However, progressively more scientists are interested in open-ended knowing, [76] [77] which is the idea of enabling AI to constantly learn and innovate like humans do.
Feasibility
Since 2023, the development and possible achievement of AGI stays a topic of intense dispute within the AI neighborhood. While standard agreement held that AGI was a remote goal, current developments have led some scientists and industry figures to declare that early forms of AGI may currently exist. [78] AI leader Herbert A. Simon speculated in 1965 that "makers will be capable, within twenty years, of doing any work a man can do". This forecast failed to come true. Microsoft co-founder Paul Allen believed that such intelligence is unlikely in the 21st century because it would require "unforeseeable and basically unpredictable advancements" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf between modern computing and human-level synthetic intelligence is as wide as the gulf in between current space flight and practical faster-than-light spaceflight. [80]
A further challenge is the lack of clarity in specifying what intelligence requires. Does it require consciousness? Must it display the ability to set goals in addition to pursue them? Is it purely a matter of scale such that if design sizes increase sufficiently, intelligence will emerge? Are facilities such as preparation, reasoning, and causal understanding needed? Does intelligence require clearly replicating the brain and its particular professors? Does it need feelings? [81]
Most AI researchers think strong AI can be achieved in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of accomplishing strong AI. [82] [83] John McCarthy is amongst those who believe human-level AI will be accomplished, but that the present level of progress is such that a date can not properly be forecasted. [84] AI specialists' views on the feasibility of AGI wax and subside. Four surveys performed in 2012 and 2013 suggested that the mean quote amongst experts for when they would be 50% positive AGI would show up was 2040 to 2050, depending on the survey, with the mean being 2081. Of the specialists, 16.5% responded to with "never ever" when asked the very same concern however with a 90% confidence rather. [85] [86] Further present AGI development considerations can be discovered above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year time frame there is a strong bias towards predicting the arrival of human-level AI as between 15 and 25 years from the time the prediction was made". They examined 95 predictions made between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft researchers released a detailed assessment of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, we think that it could fairly be considered as an early (yet still incomplete) variation of a synthetic basic intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 exceeds 99% of people on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a considerable level of basic intelligence has already been accomplished with frontier models. They composed that reluctance to this view comes from 4 primary factors: a "healthy apprehension about metrics for AGI", an "ideological commitment to alternative AI theories or techniques", a "devotion to human (or biological) exceptionalism", or a "issue about the financial implications of AGI". [91]
2023 also marked the emergence of large multimodal designs (large language models efficient in processing or generating multiple techniques such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the very first of a series of designs that "invest more time thinking before they respond". According to Mira Murati, this ability to believe before responding represents a brand-new, extra paradigm. It improves model outputs by spending more computing power when producing the response, whereas the model scaling paradigm improves outputs by increasing the model size, training data and training calculate power. [93] [94]
An OpenAI worker, Vahid Kazemi, declared in 2024 that the business had attained AGI, mentioning, "In my opinion, we have actually currently achieved AGI and it's much more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "better than the majority of people at the majority of jobs." He likewise addressed criticisms that large language models (LLMs) merely follow predefined patterns, comparing their learning procedure to the clinical method of observing, assuming, and validating. These statements have actually stimulated dispute, as they count on a broad and unconventional definition of AGI-traditionally understood as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs show exceptional flexibility, they might not completely satisfy this standard. Notably, Kazemi's comments came soon after OpenAI got rid of "AGI" from the terms of its partnership with Microsoft, prompting speculation about the business's tactical intentions. [95]
Timescales
Progress in expert system has historically gone through durations of rapid progress separated by periods when development appeared to stop. [82] Ending each hiatus were basic advances in hardware, software application or both to produce space for more development. [82] [98] [99] For instance, the hardware offered in the twentieth century was not enough to carry out deep learning, which needs great deals of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel states that estimates of the time required before a genuinely versatile AGI is built differ from ten years to over a century. Since 2007 [update], the agreement in the AGI research study community seemed to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was possible. [103] Mainstream AI scientists have actually provided a wide variety of viewpoints on whether progress will be this rapid. A 2012 meta-analysis of 95 such viewpoints discovered a predisposition towards anticipating that the beginning of AGI would happen within 16-26 years for modern and historic predictions alike. That paper has been slammed for how it categorized opinions as professional or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competition with a top-5 test error rate of 15.3%, substantially much better than the second-best entry's rate of 26.3% (the conventional technique utilized a weighted sum of scores from various pre-defined classifiers). [105] AlexNet was concerned as the preliminary ground-breaker of the present deep learning wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on openly offered and easily accessible weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ value of about 47, which corresponds around to a six-year-old kid in first grade. An adult pertains to about 100 on average. Similar tests were brought out in 2014, with the IQ rating reaching a maximum value of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model capable of performing lots of diverse jobs without particular training. According to Gary Grossman in a VentureBeat post, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be categorized as a narrow AI system. [108]
In the same year, Jason Rohrer used his GPT-3 account to develop a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI requested for changes to the chatbot to abide by their safety guidelines; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system efficient in performing more than 600 various tasks. [110]
In 2023, Microsoft Research published a research study on an early version of OpenAI's GPT-4, competing that it showed more basic intelligence than previous AI models and showed human-level performance in jobs covering numerous domains, such as mathematics, coding, and law. This research stimulated a dispute on whether GPT-4 could be considered an early, incomplete version of artificial general intelligence, stressing the requirement for more exploration and assessment of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton mentioned that: [112]
The idea that this things could really get smarter than individuals - a couple of individuals thought that, [...] But most people believed it was way off. And I thought it was method off. I thought it was 30 to 50 years or perhaps longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis similarly stated that "The progress in the last couple of years has actually been pretty amazing", and that he sees no factor why it would decrease, anticipating AGI within a decade and even a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within 5 years, AI would be capable of passing any test at least along with humans. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI employee, approximated AGI by 2027 to be "noticeably plausible". [115]
Whole brain emulation
While the advancement of transformer models like in ChatGPT is thought about the most appealing course to AGI, [116] [117] whole brain emulation can serve as an alternative method. With entire brain simulation, a brain model is constructed by scanning and mapping a biological brain in detail, and after that copying and simulating it on a computer system or another computational gadget. The simulation model must be adequately devoted to the original, so that it acts in practically the same method as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research functions. It has actually been talked about in expert system research study [103] as a technique to strong AI. Neuroimaging innovations that could deliver the essential comprehensive understanding are improving quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of adequate quality will appear on a similar timescale to the computing power required to replicate it.
Early approximates
For low-level brain simulation, a very effective cluster of computers or GPUs would be needed, provided the huge amount of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number declines with age, supporting by adulthood. Estimates differ for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based on an easy switch model for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at various quotes for the hardware needed to equal the human brain and adopted a figure of 1016 computations per second (cps). [e] (For comparison, if a "computation" was equivalent to one "floating-point operation" - a procedure used to rate existing supercomputers - then 1016 "computations" would be comparable to 10 petaFLOPS, achieved in 2011, while 1018 was achieved in 2022.) He used this figure to predict the required hardware would be offered at some point between 2015 and 2025, if the exponential growth in computer system power at the time of writing continued.
Current research study
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has established an especially comprehensive and openly available atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based approaches
The synthetic nerve cell model assumed by Kurzweil and used in numerous current synthetic neural network implementations is easy compared to biological nerve cells. A brain simulation would likely have to catch the detailed cellular behaviour of biological neurons, currently understood just in broad summary. The overhead introduced by full modeling of the biological, chemical, and physical information of neural behaviour (especially on a molecular scale) would require computational powers several orders of magnitude bigger than Kurzweil's price quote. In addition, the estimates do not represent glial cells, which are understood to play a role in cognitive procedures. [125]
An essential criticism of the simulated brain technique originates from embodied cognition theory which asserts that human personification is a vital element of human intelligence and is essential to ground significance. [126] [127] If this theory is proper, any totally functional brain model will need to include more than simply the neurons (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as a choice, but it is unidentified whether this would be adequate.
Philosophical viewpoint
"Strong AI" as defined in philosophy
In 1980, philosopher John Searle coined the term "strong AI" as part of his Chinese space argument. [128] He proposed a distinction between 2 hypotheses about expert system: [f]
Strong AI hypothesis: A synthetic intelligence system can have "a mind" and "awareness". Weak AI hypothesis: An expert system system can (just) act like it believes and has a mind and consciousness.
The very first one he called "strong" since it makes a stronger statement: it assumes something unique has actually taken place to the machine that surpasses those capabilities that we can evaluate. The behaviour of a "weak AI" maker would be exactly identical to a "strong AI" machine, however the latter would likewise have subjective mindful experience. This usage is also common in academic AI research study and books. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to suggest "human level artificial general intelligence". [102] This is not the same as Searle's strong AI, unless it is presumed that awareness is necessary for human-level AGI. Academic thinkers such as Searle do not believe that is the case, and to most synthetic intelligence researchers the question is out-of-scope. [130]
Mainstream AI is most interested in how a program acts. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it genuine or a simulation." [130] If the program can behave as if it has a mind, then there is no need to understand if it in fact has mind - undoubtedly, there would be no method to inform. For AI research study, Searle's "weak AI hypothesis" is comparable to the declaration "artificial basic intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for given, and do not care about the strong AI hypothesis." [130] Thus, for academic AI research study, "Strong AI" and "AGI" are 2 various things.
Consciousness
Consciousness can have various meanings, and some elements play substantial functions in sci-fi and the ethics of artificial intelligence:
Sentience (or "sensational awareness"): The capability to "feel" perceptions or emotions subjectively, instead of the capability to factor about understandings. Some theorists, such as David Chalmers, use the term "consciousness" to refer specifically to extraordinary consciousness, which is approximately comparable to sentience. [132] Determining why and how subjective experience emerges is understood as the difficult problem of consciousness. [133] Thomas Nagel explained in 1974 that it "feels like" something to be mindful. If we are not mindful, then it does not seem like anything. Nagel utilizes the example of a bat: we can smartly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has consciousness) however a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had accomplished life, though this claim was extensively contested by other professionals. [135]
Self-awareness: To have conscious awareness of oneself as a separate individual, particularly to be purposely familiar with one's own ideas. This is opposed to just being the "topic of one's thought"-an operating system or debugger is able to be "familiar with itself" (that is, to represent itself in the exact same method it represents whatever else)-however this is not what people generally indicate when they utilize the term "self-awareness". [g]
These characteristics have a moral dimension. AI life would offer rise to issues of well-being and legal protection, likewise to animals. [136] Other aspects of awareness related to cognitive abilities are also relevant to the idea of AI rights. [137] Figuring out how to incorporate innovative AI with existing legal and social structures is an emergent concern. [138]
Benefits
AGI could have a wide range of applications. If oriented towards such objectives, AGI might help mitigate various issues worldwide such as cravings, poverty and health issue. [139]
AGI could enhance productivity and effectiveness in most jobs. For example, in public health, AGI could speed up medical research study, significantly against cancer. [140] It might take care of the elderly, [141] and democratize access to rapid, high-quality medical diagnostics. It might offer fun, low-cost and customized education. [141] The requirement to work to subsist might end up being obsolete if the wealth produced is correctly redistributed. [141] [142] This also raises the question of the place of people in a radically automated society.
AGI might likewise help to make rational choices, and to expect and avoid disasters. It might also assist to gain the advantages of potentially disastrous innovations such as nanotechnology or climate engineering, while preventing the associated threats. [143] If an AGI's primary objective is to prevent existential catastrophes such as human extinction (which could be difficult if the Vulnerable World Hypothesis turns out to be true), [144] it might take measures to drastically reduce the dangers [143] while reducing the impact of these measures on our quality of life.
Risks
Existential threats
AGI may represent numerous kinds of existential danger, which are risks that threaten "the early termination of Earth-originating intelligent life or the irreversible and extreme destruction of its capacity for preferable future development". [145] The threat of human termination from AGI has been the subject of lots of disputes, but there is also the possibility that the development of AGI would result in a permanently flawed future. Notably, it could be utilized to spread and preserve the set of worths of whoever develops it. If humanity still has ethical blind areas comparable to slavery in the past, AGI may irreversibly entrench it, avoiding moral progress. [146] Furthermore, AGI could facilitate mass surveillance and brainwashing, which might be utilized to develop a stable repressive around the world totalitarian program. [147] [148] There is likewise a threat for the machines themselves. If devices that are sentient or otherwise worthy of ethical consideration are mass produced in the future, engaging in a civilizational course that indefinitely ignores their welfare and interests might be an existential disaster. [149] [150] Considering how much AGI could enhance humanity's future and help in reducing other existential dangers, Toby Ord calls these existential dangers "an argument for continuing with due care", not for "abandoning AI". [147]
Risk of loss of control and human extinction
The thesis that AI postures an existential threat for human beings, which this danger needs more attention, is controversial however has actually been backed in 2023 by numerous public figures, AI scientists and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized widespread indifference:
So, facing possible futures of incalculable advantages and dangers, the specialists are undoubtedly doing everything possible to ensure the finest result, right? Wrong. If a superior alien civilisation sent us a message saying, 'We'll get here in a few decades,' would we just respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is taking place with AI. [153]
The possible fate of humankind has in some cases been compared to the fate of gorillas threatened by human activities. The contrast specifies that higher intelligence permitted humanity to dominate gorillas, which are now susceptible in manner ins which they might not have actually expected. As a result, the gorilla has become an endangered species, not out of malice, but just as a civilian casualties from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to dominate mankind which we need to be careful not to anthropomorphize them and analyze their intents as we would for human beings. He said that people will not be "clever sufficient to create super-intelligent makers, yet extremely silly to the point of providing it moronic goals without any safeguards". [155] On the other side, the concept of crucial convergence recommends that almost whatever their goals, intelligent representatives will have factors to attempt to make it through and acquire more power as intermediary actions to attaining these goals. Which this does not require having emotions. [156]
Many scholars who are worried about existential risk advocate for more research into solving the "control issue" to respond to the question: what types of safeguards, algorithms, or architectures can developers carry out to maximise the possibility that their recursively-improving AI would continue to behave in a friendly, instead of damaging, way after it reaches superintelligence? [157] [158] Solving the control issue is complicated by the AI arms race (which could cause a race to the bottom of safety preventative measures in order to launch items before rivals), [159] and using AI in weapon systems. [160]
The thesis that AI can pose existential risk also has detractors. Skeptics usually state that AGI is unlikely in the short-term, or that concerns about AGI sidetrack from other issues related to present AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for many individuals outside of the technology industry, existing chatbots and LLMs are currently viewed as though they were AGI, resulting in further misconception and worry. [162]
Skeptics often charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence changing an illogical belief in an omnipotent God. [163] Some scientists believe that the communication projects on AI existential threat by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulative capture and to pump up interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other industry leaders and researchers, released a joint declaration asserting that "Mitigating the risk of extinction from AI need to be a worldwide priority together with other societal-scale dangers such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI estimated that "80% of the U.S. labor force could have at least 10% of their work tasks affected by the introduction of LLMs, while around 19% of employees may see a minimum of 50% of their jobs impacted". [166] [167] They think about workplace workers to be the most exposed, for instance mathematicians, accountants or web designers. [167] AGI could have a better autonomy, capability to make choices, to user interface with other computer tools, however also to manage robotized bodies.
According to Stephen Hawking, the outcome of automation on the lifestyle will depend upon how the wealth will be redistributed: [142]
Everyone can enjoy a life of elegant leisure if the machine-produced wealth is shared, or many people can end up miserably bad if the machine-owners successfully lobby against wealth redistribution. So far, the pattern seems to be toward the 2nd alternative, with innovation driving ever-increasing inequality
Elon Musk considers that the automation of society will require governments to adopt a universal basic income. [168]
See also
Artificial brain - Software and hardware with cognitive capabilities similar to those of the animal or human brain AI impact AI security - Research location on making AI safe and helpful AI positioning - AI conformance to the designated objective A.I. Rising - 2018 film directed by Lazar Bodroža Artificial intelligence Automated machine knowing - Process of automating the application of artificial intelligence BRAIN Initiative - Collaborative public-private research study initiative revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General game playing - Ability of expert system to play various video games Generative expert system - AI system efficient in creating material in response to triggers Human Brain Project - Scientific research study task Intelligence amplification - Use of information technology to enhance human intelligence (IA). Machine principles - Moral behaviours of man-made machines. Moravec's paradox. Multi-task learning - Solving multiple maker discovering jobs at the same time. Neural scaling law - Statistical law in maker learning. Outline of synthetic intelligence - Overview of and topical guide to artificial intelligence. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or kind of expert system. Transfer knowing - Artificial intelligence technique. Loebner Prize - Annual AI competitors. Hardware for expert system - Hardware specifically designed and optimized for expert system. Weak expert system - Form of expert system.
Notes
^ a b See below for the origin of the term "strong AI", and see the academic definition of "strong AI" and weak AI in the short article Chinese space. ^ AI creator John McCarthy composes: "we can not yet define in basic what kinds of computational procedures we want to call intelligent. " [26] (For a discussion of some meanings of intelligence utilized by expert system researchers, see viewpoint of expert system.). ^ The Lighthill report particularly slammed AI's "grand objectives" and led the taking apart of AI research in England. [55] In the U.S., DARPA ended up being determined to money only "mission-oriented direct research study, instead of fundamental undirected research study". [56] [57] ^ As AI founder John McCarthy writes "it would be an excellent relief to the remainder of the workers in AI if the developers of new general formalisms would express their hopes in a more guarded form than has actually often been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As specified in a basic AI book: "The assertion that machines might perhaps act intelligently (or, possibly much better, act as if they were smart) is called the 'weak AI' hypothesis by thinkers, and the assertion that machines that do so are actually believing (instead of simulating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to carry out a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to guarantee that synthetic basic intelligence advantages all of humanity. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new goal is producing artificial general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D jobs were recognized as being active in 2020. ^ a b c "AI timelines: What do specialists in artificial intelligence anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton gives up Google and warns of threat ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can avoid the bad stars from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows sparks of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you change changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York Times. The real danger is not AI itself but the way we deploy it. ^ "Impressed by expert system? Experts say AGI is following, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could posture existential risks to humankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last invention that humanity requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the danger of extinction from AI must be an international top priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals warn of danger of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from creating makers that can outthink us in general ways. ^ LeCun, Yann (June 2023). "AGI does not provide an existential danger". Medium. There is no reason to fear AI as an existential threat. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil describes strong AI as "machine intelligence with the full series of human intelligence.". ^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is changing our world - it is on everyone to ensure that it works out". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent traits is based upon the topics covered by major AI textbooks, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the method we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reevaluated: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reevaluated: The idea of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real young boy - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar examination to AP Biology. Here's a list of challenging tests both AI versions have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is obsolete. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended testing an AI chatbot's ability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), priced estimate in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York City Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software engineers prevented the term expert system for fear of being viewed as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who coined the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of machine intelligence: Despite development in machine intelligence, artificial general intelligence is still a significant obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not develop into a Frankenstein's monster". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why general artificial intelligence will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us utopia or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in expert system: A study of expert viewpoint. In Fundamental concerns of expert system (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of devices: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the initial on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as smart as Siri - however a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're getting in the AI golden zone in between narrow and general AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are already seeing an early example of an AGI system in the recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is debatable, however the consensus is that it is not AGI. ... If absolutely nothing else, GPT-3 tells us there is a happy medium between narrow and basic AI. ^ Quach, Katyanna. "A designer constructed an AI chatbot using GPT-3 that helped a man speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can perform over 600 jobs, from playing games to managing robots", TechCrunch, archived from the initial on 16 June 2022, retrieved 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could equal human intelligence in 'simply a few years,' says CEO of Google's primary A.I. research laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI could pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everybody seems to disagree on how to define Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research project maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A wide variety of views in existing research study, all of which need grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer system might end up being possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced quote in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (estimated in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable artificial intelligence for curiosity by the field about why a program acts the way it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the business's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense exceed benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Benefit from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, dangers, techniques (Reprinted with corrections 2017 ed.). Oxford, UK; New York City, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that human beings will ruin ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security danger' to Australia, Senate query says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the implications of expert system - but are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The interesting Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The remarkable Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023. ^ "Will Artificial Intelligence Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to catastrophic AGI danger: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race threats spiralling out of control, report cautions". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over risk postured however expert system can not be neglected". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stoking fears over AI, caution scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder says huge tech is lying about AI extinction threat". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor market impact potential of large language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of employees might see their jobs affected by AI. These are the tasks most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we require universal basic earnings because 'in the future, physical work will be an option'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Artificial intelligence and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Artificial Intelligence. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level synthetic general intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, retrieved 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, recovered 7 May 2011. Howe, J. (November 1994), Expert System at Edinburgh University: a Viewpoint, archived from the original on 17 August 2007, obtained 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Artificial Intelligence: a paper symposium, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The ultimate effort is to make computer programs that can solve problems and accomplish objectives worldwide in addition to humans. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, obtained 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, retrieved 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Expert System", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, retrieved 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Rational Approach, New York: Oxford University Press, archived from the original on 25 July 2009, obtained 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, obtained 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, recovered 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - via ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, retrieved 4 September 2013 - through ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, recovered 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what may be called "Dyson's Law") that "Any system easy enough to be easy to understand will not be complicated enough to behave wisely, while any system complicated enough to behave intelligently will be too made complex to understand." (p. 197.) Computer researcher Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead basic dumb. They work, but they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, retrieved 25 July 2010. Gleick, James, "The Fate of Free Choice" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what differentiates us from devices. For biological animals, factor and function come from acting in the world and experiencing the consequences. Expert systems - disembodied, complete strangers to blood, sweat, and tears - have no occasion for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably anticipate that those who intend to get rich from AI are going to have the interests of the rest people close at heart,' ... writes [Gary Marcus] 'We can't depend on governments driven by project financing contributions [from tech business] to push back.' ... Marcus details the needs that citizens need to make of their federal governments and the tech business. They consist of transparency on how AI systems work; settlement for individuals if their data [are] utilized to (large language model) s and the right to grant this usage; and the ability to hold tech business responsible for the harms they trigger by eliminating Section 230, enforcing cash penalites, and passing more stringent product liability laws ... Marcus likewise recommends ... that a brand-new, AI-specific federal firm, similar to the FDA, the FCC, or the FTC, might provide the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... recommends ... establish [ing] a professional licensing regime for engineers that would function in a comparable method to medical licenses, malpractice suits, and the Hippocratic oath in medicine. 'What if, like medical professionals,' she asks ..., 'AI engineers likewise promised to do no damage?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in synthetic intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually stymied human beings for decades, reveals the constraints of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competition has actually exposed that although NLP (natural-language processing) models can unbelievable tasks, their capabilities are very much limited by the amount of context they get. This [...] could cause [troubles] for scientists who wish to utilize them to do things such as analyze ancient languages. In some cases, there are couple of historic records on long-gone civilizations to work as training information for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to create fake videos equivalent from real ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we mean sensible videos produced using artificial intelligence that actually deceive people, then they hardly exist. The phonies aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in basic, operating in our media as counterfeited proof. Their function much better resembles that of cartoons, specifically smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We should prevent humanizing machine-learning designs utilized in scientific research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a maker a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the most recent, buzziest systems of synthetic general intelligence are stymmied by the same old issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, recovered 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, presented and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead authorities to ignore inconsistent evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test however revealed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at jobs that require genuine humanlike thinking or an understanding of the physical and social world ... ChatGPT seemed unable to reason logically and tried to count on its huge database of ... facts stemmed from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are effective but undependable. Rules-based systems can not handle circumstances their developers did not prepare for. Learning systems are limited by the information on which they were trained. AI failures have currently led to catastrophe. Advanced autopilot features in vehicles, although they perform well in some scenarios, have driven automobiles without alerting into trucks, concrete barriers, and parked cars. In the wrong circumstance, AI systems go from supersmart to superdumb in an instant. When an enemy is trying to control and hack an AI system, the dangers are even higher." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by new technologies but rely on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.